
Transformation of UML architectures into BIP language
models.

Anne-Lise Courbis1, Thomas Lambolais1, and Thanh Hung Nguyen2

1 École des mines d’Alès, 30 035 Nı̂mes, France,
anne-lise.courbis@mines-ales.fr, thomas.lambolais@mines-ales.fr,

2 Hanoi University of Science and Techniques, Hanoi, Vietnam
hungnt@soict.hust.edu.vn

Abstract. This document highlights UML concepts that must be used to model ar-
chitectures in order to match some expected qualities such as loose coupling, design
for change and high cohesion. It points out how such models can be transformed into
BIP language used to model reactive systems to perform a safety analysis.
Download UMLtoBIP tool: https://idcm.wp.imt.fr/idcm-tool

1 Applying architectural principles in UML

Expected architectural model qualities are loose coupling, design for change and high cohe-
sion [1, 2]. A way to reach these qualities is to apply principles of hierarchy, abstraction, infor-
mation hiding and separation of concerns ([2], p.111). We are thus concerned by fundamental
modeling artifacts of encapsulation and interface specification which will be implemented in
UML through the concepts of Component, Interface and Port (Fig. 1a).

(a) Primitive and composite components. (b) Primitive component behavior modeled by a
state machine.

Fig. 1: Extract of UML meta-model classes for architectures and their behaviors.

1.1 Modeling primitive UML components

We associate with every primitive component a behavioral specification of the expected in-
teractions of the component with its environment. Our proposal is to enable the designer to
specify incomplete and abstract (non deterministic) models, in particular at the beginning

of the design. In UML 2.4, a behavioral specification is a BehavioredClassifier that can be a
StateMachine, an Activity or a UseCase. We limit the behavioral models of primitive com-
ponents to StateMachines for two main reasons: they are appropriate to model concurrency,
activities and events, which are crucial for reactive systems; they can be used at different
abstraction levels from high level to more detailed specifications.

Fig. 1b depicts the main classes we have selected to model primitive component behaviors
by state machines.

Triggers and effects are respectively modeled by ReceiveOperationEvent and CallOpera-
tionAction allowing their associated Operation to be received and called through a defined
Port. A State may have an internal Activity modeled by a CallOperationAction defined on a
Port in order to ensure the encapsulation feature. We limit the operations to synchronized
ones.

1.2 Modeling composite components

Composite components represent architectures in terms of sub-component assembling. Like
primitive components, they are EncapsulatedClassifier to which Ports and Interfaces are
associated. The main features of StructuredClassifier will be used to define the structural
features of composite component. Fig. 1a depicts the main UML classes we have selected to
model composite components. The structural view associated with a composite component
is defined by a set of Parts (instances of Components) whose binding is performed by Con-
nectors. ConnectorEnd is restricted to Port in order to preserve the encapsulation and define
the synchronization of sub-components in a proper way. A SubComponent can be primitive
or, at its turn, composite. This division of components defines a tree whose leaves have to be
primitive components in order to be able to deduce the behavior of the composite component.

Ports of Subcomponents can be interconnected if they share at least a common Interface
that must be provided on one side of the Connection and required on the other side. Such a
Connection is of type assembly. Ports of a composite component may be connected to Ports of
its Subcomponents when they share a common Interface of the same type. Such a Connection
is of type delegation. Delegation and assembly connectors have a separate transformation rule
into BIP.

1.3 Illustration

We illustrate the aforementioned UML modeling concepts with a model describing a system
named MUTEX. The MUTEX system represents the use of a resource by two users in a mutual
exclusion mode. The component diagram (Fig. 2a) points out relations existing between the
components implied in the MUTEX system model and their interfaces. Note that it is not
an architectural description of the system. The architecture of the MUTEX system is defined
by the MUTEX composite component in terms of three component assembly (Fig. 2c). The
two sub-components of type User and ExclusiveResource involved in the architecture are
associated with state machines (Fig. 2d and Fig. 2e).

The use of ports and their association with interfaces allow the complete encapsulation of
the components. All triggers (resp. call operations) defined on the transitions of state machines
are defined without any reference to the transmitter (resp. the provider). For instance, the
call operation takeResource on the transition between state Idle and Starting on Userstate
machine is specified by the operation take and the port P. The assembly connectors allow the
components to be defined as transmitters and providers.

2 Transformation of UML architectures into BIP architectures

UML and BIP [3] share the same view about component concepts: a UML component whose
behavior is defined by a state machine matches the BIP atomic component concept, a UML

(a) Component diagram. (b) Component interfaces.

(c) Composite component. (d) User state machine. (e) Resource
state machine.

Fig. 2: MUTEX model.

composite component matches the BIP compound component. Concept of UML interface
does not directly match a BIP concept, and reciprocally, the concept of BIP port is not the
same as UML port. However, a matching is possible between the aggregation of UML ports
and their corresponding operations defined in their associated interfaces and the BIP ports.
For instance, the port P of component User which is associated with the interface IResource
will correspond to two BIP ports named P TAKE and P RELEASE. Table 1 summarizes the
link between UML and BIP concepts of components, interfaces and ports.

UML Concept BIP Concept card.

Component with a behavior AtomicType 1
Component with parts CompoundType 1
Port p Port BIPp *
for each op ∈ p.RequiredInterface ∪ p.ProvidedInterface BIPp.ident = p.ident + op.ident 1
Interface − 0

Table 1: Correspondence between UML and BIP modeling concepts

2.1 Transformation of primitive UML components into BIP atomic components

We have given in [4] a LTS semantics to UML state machines. It is important to note that
UML is more concrete and precise than LTS language. Hence, this semantics abstracts some
concepts of UML: data, events, time, ports, guards, thanks to the intrinsic non-deterministic
nature of LTS. The rules allowing the UML atomic transformation into LTS are detailed
in [4]. UML triggers and operations are both abstracted by the single notion of LTS actions.
UML ports carrying triggers and operations are translated into prefix in the label of LTS
actions.

BIP atomic models have a LTS semantics [5]. The mapping from UML to BIP is thus
trivial. Table 2 summarizes the matching between concepts of UML atomic components and

BIP components. For reasons of efficiency, the transformation from UML state machine to
BIP is realized in two steps: the LTS generation detailed in [4] and the translation of the LTS
into a BIP component. Note that transformation of states and transitions from UML into
LTS is not a one-to-one function.

UML Concept BIP/LTS Concept card.

State State 1..2
s such that t.source = s and t.effect = null or t.trigger
= null

BIPs.ident = UMLs.ident 1

s such that t.source = s and t.effect 6= null and t.trigger
6= null

BIPs1.ident = s.ident
BIPs2.ident = s.ident + “ 0”

2

Transition Transition 1..2
Event ev PortExpression = ev.trigger.port.ident

+ “ ” + ev.trigger.operation.ident
1

CallOperationAction cop PortExpression = cop.onPort.ident +
“ ” + cop.operation.ident

1

Table 2: Correspondence between concepts of UML state machines and BIP atomic compo-
nents

2.2 Transformation of composite UML components into BIP compound
components

There is a direct correspondence between composite component and BIP compound compo-
nents. A UML composite component consists of a set of Parts which match BIP Components.
A UML assembly Connector matches a set of BIP connectors. Indeed, a BIP connector is
relative to the synchronization of a single operation shared by the two interconnected ports,
while a UML connector is relative to the synchronization of the set of operations shared by the
interconnected ports. The Port of a Part belonging to a delegate connector will be exported
and renamed by the name of the port of the compound component. Table 3 summarizes the
matching of concepts between UML composite components and BIP compound components.

UML Concept BIP Concept card.

Property Component 1
Assembly connector c Connector BIPc *
for each op ∈ c.end[i].role.required.ownedOperation,
i ∈ {0, 1}

BIPc.actualPort=c.end[i].role.ident +
op.ident, where i ∈ {0, 1}

1

Delegate connector c of compound Comp export Port BIPp1 is BIPp2 *
let i ∈ {0,1} | c.end[i].role ∈ Comp.OwnedPort BIPp1.ident = c.end[i]. role.ident +

op.ident
1

for each op ∈ c.end[i].role.required. ownedOperation ∪
c.end[i].role.provided. ownedOperation

BIPp2.ident = c.end[j].role.ident +
op.ident where j = i + 1 mod 2

Table 3: Correspondence between concepts of UML composite components and BIP compound
components

2.3 Illustration

Let us consider the MUTEX system whose UML description is given in section 1.3. Table 4
gives the BIP code associated with the User and Mutex components in Fig. 2. Note that BIP
ports are labeled by the prefix of the UML ports followed by the name of the UML operation
as specified in table 1. Ports labeled by ‘i’ represent internal operations. The User code has
three parts:

package User
atomic type User

// 1 . d e c l a r a t i o n o f por t s
export port Port PIN START
export port Port P TAKE
export port Port P RELEASE
export port Port PIN FINISH
// 2 . d e c l a r a t i o n o f s t a t e s
port Port i
p lace Pseudostate1 , Id l e , I d l e 0 ,

Star t ing , S ta r t ing 0 , End ,
End 0

i n i t i a l to Pseudostate1
// 3 . LTS d e s c r i p t i o n
on i from Pseudostate1 to I d l e
on PIN START from I d l e to I d l e 0
on P TAKE from I d l e 0 to S ta r t i ng
on i from Sta r t i ng to S t a r t i n g 0
on P RELEASE from S t a r t i n g 0 to End
on i from End to End 0
on PIN FINISH from End 0 to I d l e

end
end

model Mutex
inc lude User . bip
in c lude Resource . bip
connector type rendezvous (Port p1 , Port p2)

d e f i n e [p1 p2]
end

compound type MutexType
// 1 . d e c l a r a t i o n o f sub−components
component User U1
component User U2
component ResourceExc lus ive R
// 2 . assembly connector s (synchron i za t i on)
connector rendezvous

C3 r e l e a s e (U1 .P RELEASE, R.PR RELEASE)
connector rendezvous

C3 take (U1 .P TAKE, R.PR TAKE)
connector rendezvous

C4 r e l e a s e (U2 .P RELEASE, R.PR RELEASE)
. . . / . . .
// 3 . e x t e r n a l por t s o f the compound component
export port Port PM1 FINISH i s U1 . PIN FINISH
export port Port PM1 START i s U1 .PIN START
. . . / . . .

end

component MutexType Mutex
end

Table 4: User and Mutex BIP models.

1. User component port declaration (line 4 to 7),

2. State declaration (lines 9 to 12),

3. State Transition description (lines 14 to 20).

The intermediate state labeled Idle 0 represents the UML state not explicitly defined between
the start trigger and the takeResource effect. The Mutex model code has three parts:

1. Declarations of two sub-components of type User and one sub-component of type Re-
sourceExclusive (lines 10 to 12).

2. Assembly connectors C3 and C4 are modeled by a set of BIP synchronizations (lines 15 to
19) pointing out synchronization of operations take and release belonging to the interface
IResource.

3. BIP exported ports representing UML delegate connectors C1 and C2 (lines 22 and 23).

3 Conclusion

In previous works [6, 4, 7], we have presented how performing a liveness analysis on UML
components for supporting incremental design of reactive systems. The transformation from
UML to BIP allows the performing of safety analysis using D-Finder tool [8, 9].

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software architecture: foundations, theory, and
practice. Wiley Publishing (2009)

2. Vogel, O., Arnold, I., Chughtai, A., Kehrer, T.: Software Architecture - A Comprehensive Frame-
work and Guide for Practitioners. Springer (2011)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in bip. In: Proceed-
ings of the Fourth IEEE International Conference on Software Engineering and Formal Methods
(SEFM 2006), Washington, DC, USA, IEEE Computer Society Washington 3–12

4. Lambolais, T., Courbis, A.L., Luong, H.V., Percebois, C.: Idf: A framework for the incremental
development and conformance verification of uml active primitive components. Journal of Systems
and Software 113 (2016) 275–295

5. Basu, A.: Component-based modeling of heterogeneous real-time systems in bip. PhD thesis,
Université Joseph-Fourier-Grenoble I (2008)

6. Luong, H.V., Lambolais, T., Courbis, A.L.: Implementation of the Conformance Relation for
Incremental Development of Behavioural Models. In Czarnecki, K., Ober, I., Bruel, J.M., Uhl,
A., Völter, M., eds.: Proceedings of 11th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2008). Volume 5301 of Lecture Notes in Computer Science.,
Springer Berlin Heidelberg (2008) 356–370

7. Lambolais, T., Courbis, A.L., Luong, H.V., Phan, T.L.: Designing and integrating complex sys-
tems: Be agile through liveness verification and abstraction. In: Complex Systems Design &
Management, Springer (2016) 69–81

8. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental component-
based construction and verification using invariants. In: Formal Methods in Computer-Aided
Design (FMCAD), 2010, IEEE (2010) 257–256

9. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-finder: A tool for compositional deadlock
detection and verification. In: International Conference on Computer Aided Verification, Springer
(2009) 614–619

